
Pentaprism

A pentaprism changes the direction of a beam by 90 degrees. It is straightforward to enter such a system using the bend command in OSLO. However, to draw a picture of the system requires special work because of the nature of the prism. The system shown here uses OSLO's boundary data information (**bdi**) to draw the prism, as shown in the figure below.

The pentaprism system included here is intended as a base system into which you can insert your own optics as required. Blank pieces of glass are placed in front and behind the prism for demonstration. The data are shown in the following list.

*LENS Penta SRF 0	DATA prism example RADIUS	THICKNESS 1.0000e+20	APERTURE RADIUS 1.0000e+14	GLASS SP AIR	E NOTE
1 2		1.000000 1.000000	1.414214 A 1.414214	BK7 C	* Your lens
3		2.414214	1.000000 X	BAK1 C	*
4 5 6		-2.000000 2.414214	1.082400 X 1.082400 X	REFLECT	*
6 7		1.000000	1.000000 X 1.414214	71211	* Penta prism *
8			1.414214	AIR	Your lens
9			1.414214		

From an optical standpoint, the interesting surfaces are 3-6. The orientation of the surfaces is straightforward and easily handled by the **ben** command. The sides of the prism are rectangular, so each surface must have a rectangular special aperture, calculated according to the standard pentaprism geometry. Since the actual prism surfaces are to be represented by **bdi** information (in contrast to being enclosed in a bounding box, it is important that the drawing information accurately represent the true situation.

*TILT	/DECENTI	ER DATA					
4	DT	1	DCX		DCY	 DCZ	
	BEN		TLA	22.500000	TLB	 TLC	
5	DT	1	DCX		DCY	 DCZ	
	BEN		TLA	22.500000	TLB	 TLC	

*APERTURES SRF TYPE APERTURE RADIUS 0 SPC 1.0000e+14 1 SPC 1.414214

2	SPC	1.414214						
3	SPC	1.000000						
	Special	Aperture Gro	up 0:					
	A ATP	Rectangle	AAC	Transmit	AAN			
	AX1	-1.000Ŏ00	AX2	1.000000	AY1	-1.000000	AY2	1.000000
4	SPC	1.082400						
	Special	Aperture Gro	up 0:					
	A ATP	Rectangle	AAC	Transmit	AAN			
	AX1	-1.082400	AX2	1.082400	AY1	-1.082400	AY2	1.082400
5	SPC	1.082400						
	Special	Aperture Gro						
	A ATP	Rectangle	AAC	Transmit	AAN			
	AX1	-1.082400	AX2	1.082400	AY1	-1.082400	AY2	1.082400
6	SPC	1.000000						
	Special	Aperture Gro	up 0:					
	A ATP	Rectangle	AAC	Transmit	AAN			
	AX1	-1.000000	AX2	1.000000	AY1	-1.000000	AY2	1.000000
7	SPC	1.414214						
8	SPC	1.414214						
9	SPC	1.414214						

For the drawing, surfaces 3-6 are marked "not drawn" in the special data surface control spreadsheet:

```
*SURFACE TAG DATA

1 LMO ELE (2 surfaces)
3 LMO ELE (4 surfaces)
3 DRW OFF
4 DRW OFF
5 DRW OFF
6 DRW OFF
7 LMO ELE (2 surfaces)
```

There is no spreadsheet for entering boundary data. You can use the normal lens editor in command mode, giving the commands

```
len upd
gto 3
bdi 16 9
vx 1 -1 -1 0 0
vx 2 -2 2 0 0
.
pf 1 1 2 3 4
pf 2 5 6 7 8
.
etc. according to the list below:
```

In connection with the input of bdi data, please note that the data must be preceded by a bdi command that states how many vertices and how many polygon faces are to be used.

The last number in each vertex record is the surface number relative to the current surface. In the output listing, this is converted into an absolute surface number reference.

*BOUNDARY SRF 3:	DRAWING DATA			
VX NBR	X	Υ	Z	COORD SURF
1	-1.000000	-1.000000		3
2	-1.000000	1.000000		3
…etc.				
PF NBR	VX1	VX2	VX3	VX4
1	1	2	3	4
2	5	6	7	8
etc.				